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SPL

e The phase measurement system is being developed in parallel

with a separate optical system development at

U. Colorado/Ball Aerospace
— See paper by M. Stephens, session A8P3
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GRACE Mission
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* Change in distance between spacecraft in low Earth orbit
monitored to estimate underlying mass distribution

e Measurement accuracy (~ 100 nm) limited by
— (1) thermal noise
— (2) clock-like noise
* includes frequency (in)stability of microwave signal source
e Gravity field accuracy also limited by
— (3) non-gravitational forces on spacecraft
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Range Change From Gravity

SPL

e Earth gravity features affect lead/trailing spacecraft at different times

— Lead spacecraft encounters feature first

e ¢.g. lead spacecraft speeds up towards mountain

— Range to trailing spacecraft increases

— Any unknown non-gravity forces acting on spacecraft also affect range
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e Calibrated out using accelerometer or drag-free sensor system
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SJPL

Goals for Next Gravity Mission

e (Goal 1s to measure gravity changes with more precision over
much smaller spatial scales

e Aim for x1000 improvement over GRACE in measurement
system accuracy
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Ranging Measurement SRl

* Range 1s inferred from | ﬂ -,
. Transmitter/ 7

measurement of round-trip Receiver 1 Mirror
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* High power concentration to Receiver

overcome 1/r* loss (Clock) -
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— Continuous preferred when
‘mirror’ is active
e Better SNR; only 1/r? losses
e Higher precision from higher
intrinsic frequency
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Dual One-Way versus Transceiver =

* GRACE uses independent
transmission/detection at

each Spacecraft USO > Transmitter Transmitter [ Uso
— Combination of data on ground ! >< !
determines range Mixer t&—| Detcctor Detector  [—»{  Mixer
e Laser metrology uses S w— e o}
detection/locking-
/transmission at one
spacecraft
— Otherwise laser frequencies USO o] Transmitter  betector | Mixer by

would be too far apart !

Mixer {e— Detector | Transmitter Phasemeter

— Fast phase meter needed for
locking function l o | Phasemeter \

\

ESTC 29 Jun 06 7




% Interferometric Ranging Transceiver

* Prototype optical benches being developed to transmit laser
signals between spacecraft to measure range to <1 nm.
— See paper by M. Stephens et al., this conference

* Range between freely-floating masses in drag-free spacecraft
— See New Millennium Program ST'7 paper
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Other Applications

 LISA is based on a triangular
interferometer, each arm similar
to the IRT for GRACE-follow-on

— LISA requires higher measurement
accuracy, higher fringe frequency,
lower frequency-rate

e SIM uses modulation
interferometer to measures
distance between reference
corner cubes

— More sensitive to cyclic errors
— Can use lower signal frequency
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Laser Measurement Requirements S0

* Why new phasemeter development?
— Laser signals have much higher carrier frequency

* So Doppler shifts cause much higher signal frequency shifts and
frequency rates

— Lasers have much higher frequency variation
— Compared with microwave signal locked to USO

e Phasemeter must track with higher loop bandwidths
— Higher accuracy requires better use of signal-to-noise ratio

e Sampling must be 4-bit or greater
— (GRACE uses 1-bit samples)

— Lasers need to lock to other laser signals
e Phasemeter output needed at >10kHz
e Phasemeter should autonomously search for reference signal and lock

* Phasemeter must be insensitive to laser power fluctuations
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Phase Measurement

SPL

e Local-model correlation method for phase measurement
— Input signal (voltage) is multiplied (at each time)by;
* Model of expected signal
e Model of expected signal shifted by 90°
— Cross-multiplications summed over integration time to get I, Q

— Phase measurement is given by Tan!(I/Q)
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Breadboard Phasemeter Development _JSFL

 Commercially available cards used for rapid development

e Labview-programmable FPGA card i1dentified for ease of
testing different algorithm implementations

e Fast analog-to-digital conversion cards available allow
working over full expected range of Doppler variations

 A/D and FPGA run at 40 MHz

e Qutput available at 20 kHz for locking laser in ‘slave’
spacecraft

* Slower rate output used for highest precision

* Provides real time display and data logging
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SPL

e Commercial rack-mount
analog-to-digital converter

e PCXI cpu running real-time
labview

— Labview-programmable FPGA
card

— Upgraded in last 6 months to
accommodate up to 4 channels

* Host PC tower for monitor
and data logging (not shown)
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Breadboard Phasemeter Architecture JIL.
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Accuracy & Dynamic Range

SPL

e Digitally tested dynamic range
requirement.

— Digitally generated 3
independent, laser-like
noise sources such that,
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Equivalent Optical Setup
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SPL

Anti-Aliasing

e Phasemeter designed to have aliasing suppression of 107 in the signal band.

Alias-test of SR620; 1 Vpp 200 kHz + 0.1 Vpp (400 kHz + df)
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Amplitude Sensitivity

SPL

e Phase measurement should
be insensitive to amplitude
changes

e Technique for adding
random noise to most
significant bit developed to
limit sensitivity to amplitude
changes

— Also allows operation at
signal frequencies which
are integer-ratios of
sampling frequency

— At cost of slight, acceptable
increase in noise
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Sampling Jitter =

e Jitter in the sampling time ot
produces a phase error

¢ =otx f,

e Forl ptcycle/\/ Hz phase noise
requirement, and a 20 MHz
heterodyne frequency.

St <0.5x 10-13 s/v/ Hz

e Jitter in the sampling time
arising from clock is already
removed.

e Remaining sampling jitter is
the fluctuating latency of the
ADC.
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Calibrate jitter by processing the phase
of a known signal at a different
frequency using the same ADC.
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Sampling Jitter Calibration

SPL

e A/D sampling jitter can
be calibrated by adding
signal locked to
phasemeter reference
clock to input of sampler

* Technique has been
tested to show
suppression of jitter noise
to 10 cycle/sqrt(Hz)
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Laser Locking Test

“The fast-phasemeter has been used to 5 Phase Locking Performance
phase-lock two commercial NPRO lasers 10 e S ommon ADC Measurement |1
Maintains phase-lock indefinitely (weeks). | — Independent ADC Measurement]
. U TS - ===Measurement requirement :
“Used science phasemeter to evaluate 10 h | | ;
locking performance. - R
T DO
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e Locked to < 1 ucycle/sqrt(Hz) above 100 mHz
e Locked to < 10 ucycle /sqrt(Hz) at 1 mHz
e  Low frequency performance limited by ADC jitter.
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* The PC phasemeter has been installed
and tested in the IRT breadboard test bed
at Ball Aerospace

 PC phasemeter works well with real
optical signals

* The PC phasemeter has better
performance than GRACE electronics
previously used

— Has much more flexible interface
— Can be rapidly modifed if necessary

e E.g. aramp function to simulate orbit
dynamics was implemented with a
simple software update
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Phasemeter Path to Flight S0

e Algorithms fully tested over
required dynamic ranges

e Algorithms being ported to all
integer arithmetic on FPGA
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Summary =

* Breadboard phasemeter works very well

— Phasemeter has passed all digital and electronic tests

— Critical requirements have been demonstrated

— Tests of the phasemeter in a optical/electronic system are underway
* Phasemeter has a clear path to flight

— All components are off the shelf items

— Can be used for many applications
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